login
A216061
Primes p such that p^3 + p + 1 is prime.
1
2, 3, 5, 17, 29, 41, 53, 71, 83, 131, 179, 191, 239, 263, 311, 389, 491, 509, 557, 569, 593, 653, 701, 719, 743, 797, 821, 863, 887, 953, 971, 977, 1019, 1049, 1097, 1109, 1277, 1301, 1319, 1373, 1427, 1481, 1523, 1559, 1601, 1607, 1613, 1667, 1787, 1823
OFFSET
1,1
LINKS
MAPLE
A := {}; for n to 1000 do p := ithprime(n); if isprime(p^3+p+1) then A := `union`(A, {p}) end if end do; A := A
MATHEMATICA
Select[Prime[Range[400]], PrimeQ[#^3 + # + 1] &] (* Bruno Berselli, Sep 01 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(2000) | IsPrime(p^3+p+1)]; // Bruno Berselli, Sep 01 2012
CROSSREFS
Cf. A053182.
Subsequence of A045309.
Sequence in context: A057468 A127062 A214735 * A348062 A349678 A029972
KEYWORD
nonn,easy
AUTHOR
César Eliud Lozada, Aug 31 2012
STATUS
approved