%I #8 Jul 02 2017 20:23:12
%S 0,1,1,7,13,7,73,461,1721,7391,35741,95833,140902,7208291,6221977,
%T 738064507,5846167507,49265043007,440034922507,4152348777757,
%U 41275487330257,431068442131507,4718790944945257,27013799863651691,322866652557800441,502628413904332477
%N Numerator of sum( k!/2^k, k=1..n ).
%C If a(n) is even, then A215976(n)=0 (and n is listed in A215974); the converse is not necessarily true.
%t Table[Numerator[Sum[k!/2^k,{k,n}]],{n,0,30}] (* _Harvey P. Dale_, Jul 02 2017 *)
%o (PARI) a(n)=numerator(sum(k=1,n,k!/2^k))
%o (PARI) s=0;for(k=1,29,print1(numerator(s+=k!/2^k),","))
%K nonn
%O 0,4
%A _M. F. Hasler_, Aug 29 2012