login
A215926
Smallest deficient number k such that the product k*n is non-deficient (perfect or abundant).
1
3, 2, 3, 4, 1, 4, 3, 2, 2, 8, 1, 8, 2, 2, 3, 16, 1, 16, 1, 2, 3, 16, 1, 4, 3, 2, 1, 16, 1, 16, 3, 2, 3, 2, 1, 32, 3, 2, 1, 32, 1, 32, 2, 2, 3, 32, 1, 4, 2, 2, 2, 32, 1, 4, 1, 2, 3, 32, 1, 32, 3, 2, 3, 4, 1, 64, 3, 2, 1, 64, 1, 64, 3, 2, 3, 4, 1, 64, 1, 2, 3
OFFSET
2,1
COMMENTS
If n is perfect or abundant then a(n) = 1.
Conjecture: a(n) is 1, 3, or a power of 2.
Conjecture: The first occurrence of 2^m happens at A014210(m).
LINKS
EXAMPLE
a(3) = 2 since 2*3 is perfect.
MATHEMATICA
Table[k = 1; While[DivisorSigma[1, k] >= 2*k || DivisorSigma[1, k*n] < 2*k*n, k++]; k, {n, 2, 100}] (* T. D. Noe, Aug 27 2012 *)
CROSSREFS
Sequence in context: A341097 A239959 A214435 * A007888 A188723 A341890
KEYWORD
nonn
AUTHOR
Michel Marcus, Aug 27 2012
STATUS
approved