login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A215919 a(n) = -3*a(n-1) + a(n-3), with a(0)=0, a(1)=-3, a(2)=12. 5
0, -3, 12, -36, 105, -303, 873, -2514, 7239, -20844, 60018, -172815, 497601, -1432785, 4125540, -11879019, 34204272, -98487276, 283582809, -816544155, 2351145189, -6769852758, 19493014119, -56127897168, 161613838746, -465348502119, 1339917609189, -3858138988821 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The Berndt-type sequence number 10 for the argument 2Pi/9 defined by the first trigonometric relation from the section "Formula" below. The sequence a(n) is connected with sequences A215917 and A215885 - see the respective formula.

We have A035045(n)=abs(a(n+1)/3) for every n=0,1,...,5 and A035045(7) + a(7)/3 = 1, A035045(8) - a(8)/3 = 10, A035045(9) + a(9)/3 = 63, and A035045(10) - a(10)/3 = 320 - all these four results-numbers are in A069269.

REFERENCES

D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the ninth order, (submitted, 2012).

R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math. (in press, 2012).

LINKS

Table of n, a(n) for n=0..27.

Index entries for linear recurrences with constant coefficients, signature (-3,0,1).

FORMULA

a(n) = c(1)*(-c(2))^(-n) + c(2)*(-c(4))^(-n) + c(4)*(-c(1))^(-n), where c(j) := 2*cos(2*Pi*j/9).

a(n) = A215917(n+1) + A215917(n) - 2*(-1)^n*A215885(n).

G.f.: -3*x*(1-x)/(1+3*x-x^3).

EXAMPLE

We have a(2)=-4*a(1), a(3)=-3*a(2), a(6)/a(3) = -24.25, and a(9) = 579*a(3).

MATHEMATICA

LinearRecurrence[{-3, 0, 1}, {0, -3, 12}, 50]

CROSSREFS

Cf. A215917, A215885, A215664.

Sequence in context: A242526 A167667 A292291 * A027327 A290927 A167993

Adjacent sequences:  A215916 A215917 A215918 * A215920 A215921 A215922

KEYWORD

sign,easy

AUTHOR

Roman Witula, Aug 27 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 23:05 EST 2019. Contains 319282 sequences. (Running on oeis4.)