The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215694 a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3) with a(0)=1, a(1)=2, a(2)=7. 10

%I

%S 1,2,7,24,80,263,859,2797,9094,29547,95968,311652,1011999,3286051,

%T 10669913,34645258,112492863,365262680,1186001480,3850924183,

%U 12503874715,40599829957,131826825678,428039023363,1389833992704,4512762649020,14652848312239,47577499659779,154483171074481,501603705725970,1628697001842743

%N a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3) with a(0)=1, a(1)=2, a(2)=7.

%C The Berndt-type sequence number 9 for the argument 2Pi/7 defined by the first trigonometric relation from section "Formula". For more connections with another sequences of trigonometric nature see comments to A215512 (a(n) is equal to the sequence b(n) in these comments) and Witula-Slota's reference (Section 3). We note that a(n)=A109682(n) for n=1,2,3,4. Moreover the following summation formula hold true: sum{k=3,..,n} a(k) = 5*a(n-1) - a(n-2) - 9, for every n=3,4,... - see comments to A215512.

%C The inverse binomial transform is 1,1, 4, 8, 19, 42, 95,... essentially a shifted, unsigned variant of A215112. - _R. J. Mathar_, Aug 22 2012

%H G. C. Greubel, <a href="/A215694/b215694.txt">Table of n, a(n) for n = 0..1000</a>

%H Roman Witula and Damian Slota, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Slota/witula13.html">New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7</a>, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-6,1).

%F sqrt(7)*a(n) = s(4)*c(1)^(2*n) + s(1)*c(2)^(2*n) + s(2)*c(4)^(2*n), where c(j):=2*cos(2*Pi*j/7) and s(j):=2*sin(2*Pi*j/7).

%F G.f.: (1-3*x+3*x^2)/(1-5*x+6*x^2-x^3).

%F a(n) = A005021(n)-3*A005021(n-1)+3*A005021(n-2). - _R. J. Mathar_, Aug 22 2012

%e We have 10*a(3) = 3*a(4), a(0)+a(1)+3*a(2) = a(3), a(0)+a(2)+3*a(3) = a(4), a(1)+3*a(2)+3*a(4) = a(5), and a(6) = 3*a(5)+3*a(4)-a(1).

%t LinearRecurrence[{5,-6,1}, {1,2,7}, 50]

%o (PARI) Vec((1-3*x+3*x^2)/(1-5*x+6*x^2-x^3)+O(x^99)) \\ _Charles R Greathouse IV_, Oct 01 2012

%o (MAGMA) I:=[1,2,7]; [n le 3 select I[n] else 5*Self(n-1) - 6*Self(n-2) + Self(n-3): n in [1..30]]; // _G. C. Greubel_, Apr 25 2018

%Y Cf. A215512, A215695.

%K nonn,easy

%O 0,2

%A _Roman Witula_, Aug 21 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 01:34 EDT 2020. Contains 334671 sequences. (Running on oeis4.)