login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A215581 The limit of the string "0, 1" under the operation 'append last k terms, append first k terms, increment k' with k=1 initially. 0
0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0

COMMENTS

An infinite binary word.

b(n) = sum of the first 10^n terms  begins: 0, 4, 50, 534, 5218, 48127, 517287, 5390832, 53047574, 504439952, 4838747337.

LINKS

Table of n, a(n) for n=0..85.

EXAMPLE

01 -> 01 1 0 -> 0110 10 01 -> 01101001 001 011 etc.

PROG

(Python)

TOP = 1000

a = [0]*TOP

a[1] = 1

n = 2

k = 1

while n+k*2 < TOP:

  a[n:] = a[n-k:n]

  n += k

  a[n:] = a[:k]

  n += k

  k += 1

for k in range(n):

  print a[k],

CROSSREFS

Cf. A094186, A215531, A215532.

Sequence in context: A209229 A295890 A284622 * A156595 A286493 A189084

Adjacent sequences:  A215578 A215579 A215580 * A215582 A215583 A215584

KEYWORD

nonn,easy

AUTHOR

Alex Ratushnyak, Aug 16 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 20:53 EDT 2019. Contains 323534 sequences. (Running on oeis4.)