login
A215541
a(n) = binomial(5*n,n)*(3*n+1)/(4*n+1).
2
1, 4, 35, 350, 3705, 40480, 451269, 5101360, 58261125, 670609940, 7766844470, 90404916420, 1056658719675, 12393263030400, 145787921878840, 1719353829326880, 20322351313767965, 240674861588534100, 2855214354095519625, 33924757188414045330, 403641797464597415570
OFFSET
0,2
COMMENTS
Number of standard Young tableaux of shape [4n,n]. Also the number of binary words with 4n 1's and n 0's such that for every prefix the number of 1's is >= the number of 0's. The a(1) = 4 words are: 10111, 11011, 11101, 11110.
LINKS
Wikipedia, Young tableau
FORMULA
a(n) = C(5*n,n)*(3*n+1)/(4*n+1).
a(n) = [x^n] ((1 - sqrt(1 - 4*x))/(2*x))^(3*n+1). - Ilya Gutkovskiy, Nov 01 2017
Recurrence: 8*n*(2*n - 1)*(3*n - 2)*(4*n - 1)*(4*n + 1)*a(n) = 5*(3*n + 1)*(5*n - 4)*(5*n - 3)*(5*n - 2)*(5*n - 1)*a(n-1). - Vaclav Kotesovec, Feb 03 2018
MAPLE
a:= n-> binomial(5*n, n)*(3*n+1)/(4*n+1):
seq(a(n), n=0..25);
CROSSREFS
Column k=4 of A214776.
Sequence in context: A188527 A292190 A026304 * A104456 A277868 A305905
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 15 2012
STATUS
approved