This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215531 The limit of the string "0, 1" under the operation 'append first k terms, k=k+2' with k=1 initially. 4
 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 COMMENTS An infinite binary word. b(n) = sum of the first 10^n terms begins: 0, 3, 35, 342, 3425, 33759, 343464, 3447277, 34183683, 338743553, 3382195010. LINKS Robert Israel, Table of n, a(n) for n = 0..9999 EXAMPLE 01 -> 010 -> 010 010 -> 010010 01001 ->  01001001001 0100100 etc. MAPLE S:= "01": k:= 1: for i from 1 to 10 do   S:= cat(S, S[1..k]);   k:= k+2; od: seq(parse(S[i]), i=1..length(S)); # Robert Israel, Jun 12 2018 PROG (Python) TOP = 1000 a = [0]*TOP a[1] = 1 n = 2 k = 1 while n+k < TOP:   a[n:] = a[:k]   n += k   k += 2 for k in range(n):   print a[k], CROSSREFS Cf. A094186, A215532, A215530. Sequence in context: A286655 A272170 A126565 * A305386 A174998 A257800 Adjacent sequences:  A215528 A215529 A215530 * A215532 A215533 A215534 KEYWORD nonn,easy AUTHOR Alex Ratushnyak, Aug 15 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 01:29 EST 2019. Contains 320364 sequences. (Running on oeis4.)