login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

2n-th derivative of cos(x)^cos(x) at x=0.
3

%I #25 Apr 17 2023 09:29:43

%S 1,-1,7,-76,1597,-41776,1673167,-74527636,4832747017,-305644428256,

%T 30618856073947,-2276081971574236,390042814538656957,

%U -20435946140834126176,10544180964356207226247,604793906292405974180324,688972694565220644332739217

%N 2n-th derivative of cos(x)^cos(x) at x=0.

%H Seiichi Manyama, <a href="/A215515/b215515.txt">Table of n, a(n) for n = 0..243</a>

%F a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * A354520(2*k) * binomial(2*n-1,2*k-1) * a(n-k). - _Seiichi Manyama_, Aug 17 2022

%p a:= n-> coeff(series(cos(x)^cos(x), x, 2*n+1), x, 2*n)*(2*n)!:

%p seq(a(n), n=0..21); # _Alois P. Heinz_, Apr 17 2023

%t f[x_] := Cos[x]^Cos[x]; Table[Derivative[2*n][f][0],{n,0,30}]

%o (PARI) a354520(n) = sum(k=1, n\2, (16^k-4^k)*bernfrac(2*k)/(2*k)*binomial(n, 2*k));

%o a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (-1)^j*a354520(2*j)*binomial(2*i-1, 2*j-1)*v[i-j+1])); v; \\ _Seiichi Manyama_, Aug 17 2022

%Y Cf. A000182, A215518, A354520.

%K sign

%O 0,3

%A _Michel Lagneau_, Aug 14 2012