OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/4) * eta(q)^14 / eta(q^2)^4 in powers of q.
Expansion of q^(-1/4) * ( eta(q)^4 * eta(q^2)^2 * eta(q^4)^4 + 4 * eta(q^2)^4 * eta(q^4)^2 * eta(q^8)^4 ) in powers of q. - Michael Somos, Sep 05 2013
Euler transform of period 2 sequence [ -14, -10, ...].
a(n) = b(4*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * p^(2*e) if p == 3 (mod 4), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) otherwise.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 128 (t/i)^5 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A030212.
a(n) = (-1)^n * A209942(n). a(9*n + 5) = a(9*n + 8) = 0. a(9*n + 2) = 81 * a(n).
a(n) = A030212(4*n + 1). - Michael Somos, Sep 05 2013
EXAMPLE
1 - 14*x + 81*x^2 - 238*x^3 + 322*x^4 - 429*x^6 + 82*x^7 + 2162*x^9 + ...
q - 14*q^5 + 81*q^9 - 238*q^13 + 322*q^17 - 429*q^25 + 82*q^29 + 2162*q^37 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^14 / QPochhammer[ x^2]^4, {x, 0, n}] (* Michael Somos, Sep 05 2013 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x + A)^7 / eta(x^2 + A)^2 )^2, n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 12 2012
STATUS
approved