login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A215465 a(n) = (Lucas(4n) - Lucas(2n))/4. 3
0, 1, 10, 76, 540, 3751, 25840, 177451, 1217160, 8344876, 57202750, 392089501, 2687463360, 18420257701, 126254611990, 865362736876, 5931286406640, 40653646980451, 278644255208560, 1909856172864751, 13090349042248500 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

This is a divisibility sequence, that is, if n | m then a(n) | a(m). However, it is not a strong divisibility sequence. It is the case k = 3 of a 1-parameter family of 4th-order linear divisibility sequences with o.g.f. x*(1 - x^2)/( (1 - k*x + x^2)*(1 - (k^2 - 2)*x + x^2) ). Compare with A000290 (case k = 2) and A085695 (case k = -3). - Peter Bala, Jan 17 2014

In general, for distinct integers r and s with r = s (mod 2), the sequence Lucas(r*n) - Lucas(s*n) is a fourth-order divisibility sequence. See A273622 for the case r = 3, s = 1. - Peter Bala, May 27 2016

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

P. Bala, Lucas sequences and divisibility sequences

E. L. Roettger and H. C. Williams, Appearance of Primes in Fourth-Order Odd Divisibility Sequences, J. Int. Seq., Vol. 24 (2021), Article 21.7.5.

Hugh Williams, R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory vol. 7 (5) (2011) 1255-1277

Index entries for linear recurrences with constant coefficients, signature (10,-23,10,-1).

FORMULA

4*a(n) = A000032(4*n) - A000032(2*n).

a(n) = A056854(n)/4 - A005248(n)/4.

G.f.: -x*(x-1)*(1+x) / ( (x^2-7*x+1)*(x^2-3*x+1) ).

a(n) = 10*a(n-1) - 23*a(n-2) + 10*a(n-3) - a(n-4). - G. C. Greubel, Jun 02 2016

a(n) = 2^(-2-n)*((7-3*sqrt(5))^n-(3-sqrt(5))^n-(3+sqrt(5))^n+(7+3*sqrt(5))^n). - Colin Barker, Jun 02 2016

EXAMPLE

a(3) = 76 because the 12th (4 * 3rd) Lucas number is 22, the 6th (2 * 3rd) Lucas number is 18, and (322 - 18)/4 = 304/4 = 76.

MAPLE

A215465 := proc(n)

    (A000032(4*n)-A000032(2*n))/4 ;

end proc:

MATHEMATICA

Table[(LucasL[4n] - LucasL[2n])/4, {n, 0, 19}] (* Alonso del Arte, Aug 11 2012 *)

CoefficientList[Series[-x*(x-1)*(1+x)/((x^2 - 7*x + 1)* (x^2 - 3*x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 23 2012 *)

LinearRecurrence[{10, -23, 10, -1}, {0, 1, 10, 76}, 50] (* G. C. Greubel, Jun 02 2016 *)

PROG

(MAGMA) [(Lucas(4*n) - Lucas(2*n))/4: n in [0..20]]; // Vincenzo Librandi, Dec 23 2012

CROSSREFS

A085695, A273622.

Sequence in context: A081199 A351132 A198692 * A169584 A107903 A075489

Adjacent sequences:  A215462 A215463 A215464 * A215466 A215467 A215468

KEYWORD

nonn,easy

AUTHOR

R. J. Mathar, Aug 11 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 5 05:47 EDT 2022. Contains 355087 sequences. (Running on oeis4.)