login
A215450
a(0)=0, a(1)=1, a(n) = a(n-1) + (Sum_{i=0..n-1} a(i)) mod n.
0
0, 1, 2, 2, 3, 6, 8, 9, 16, 18, 23, 23, 26, 33, 35, 45, 55, 71, 87, 94, 111, 128, 132, 140, 152, 172, 186, 198, 210, 224, 244, 249, 264, 294, 325, 341, 344, 360, 393, 425, 434, 454, 491, 525, 530, 538, 541, 573, 604, 649, 687, 687, 733, 749, 785, 804, 805, 826, 870, 904
OFFSET
0,3
FORMULA
a(0)=0, a(1)=1, a(n) = a(n-1) + (a(0)+...+a(n-1)) mod n.
PROG
(Python)
a = [0]*77
a[1]=1
sum = a[0]+a[1]
for n in range(2, 77):
print(a[n-2], end=', ')
a[n] = a[n-1] + sum % n
sum += a[n]
CROSSREFS
Cf. A001519 is essentially equal to: a(0)=0, a(1)=1, a(n) = a(n-1) + Sum_{i=0..n-1} a(i).
Cf. A182444.
Sequence in context: A275493 A193595 A077871 * A300352 A035587 A039870
KEYWORD
nonn,easy,changed
AUTHOR
Alex Ratushnyak, Aug 10 2012
STATUS
approved