This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215337 Cyclically smooth Lyndon words with 5 colors. 2
 5, 4, 8, 15, 36, 74, 180, 411, 996, 2400, 5940, 14707, 36972, 93276, 237264, 606030, 1556028, 4009118, 10367892, 26888925, 69930264, 182296212, 476262756, 1246695079, 3269321352, 8587452204, 22590645408, 59510993607, 156973954860, 414552239458, 1096017973380, 2900753084400, 7684758670248, 20377460964156, 54081265456116 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS We call a Lyndon word (x[1],x[2],...,x[n]) smooth if abs(x[k]-x[k-1]) <= 1 for 2<=k<=n, and cyclically smooth if abs(x[1]-x[n]) <= 1. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, Smooth words and Chebyshev polynomials, arXiv:0809.0551v1 [math.CO], 2008. FORMULA a(n) = sum_{ d divides n } moebius(n/d) * A208774(d). EXAMPLE The cyclically smooth necklaces (N) and Lyndon words (L) of length 4 with 5 colors (using symbols ".", "1", "2", "3", and "4") are:     ....   1       .  N     ...1   4    ...1  N L     ..11   4    ..11  N L     .1.1   2      .1  N     .111   4    .111  N L     .121   4    .121  N L     1111   1       1  N     1112   4    1112  N L     1122   4    1122  N L     1212   2      12  N     1222   4    1222  N L     1232   4    1232  N L     2222   1       2  N     2223   4    2223  N L     2233   4    2233  N L     2323   2      23  N     2333   4    2333  N L     2343   4    2343  N L     3333   1       3  N     3334   4    3334  N L     3344   4    3344  N L     3434   2      34  N     3444   4    3444  N L     4444   1       4  N There are 24 necklaces (so A208774(4)=24) and a(4)=15 Lyndon words. PROG (PARI) default(realprecision, 99); /* using floats */ sn(n, k)=1/n*sum(i=1, k, sumdiv(n, j, eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j))); vn=vector(66, n, round(sn(n, 5)) ); /* necklaces */ /* Lyndon words, via Moebius inversion: */ vl=vector(#vn, n, sumdiv(n, d, moebius(n/d)*vn[d])) CROSSREFS Sequence in context: A187891 A086407 A160427 * A090124 A097943 A241420 Adjacent sequences:  A215334 A215335 A215336 * A215338 A215339 A215340 KEYWORD nonn AUTHOR Joerg Arndt, Aug 13 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.