login
A215288
Number of permutations of 0..floor((n*4-1)/2) on even squares of an n X 4 array such that each row and column of even squares is increasing.
4
1, 6, 30, 280, 2100, 23100, 210210, 2522520, 25729704, 325909584, 3585005424, 47117214144, 546896235600, 7383099180600, 89212448432250, 1229149289511000, 15323394475903800, 214527522662653200, 2742051789669912720
OFFSET
1,2
LINKS
FORMULA
f3=floor((n+1)/2),
f4=floor(n/2),
a(n) = A060854(2,f3)*A060854(2,f4)*binomial(2*f3+2*f4,2*f3).
EXAMPLE
Some solutions for n=5
..2..x..4..x....0..x..3..x....2..x..3..x....0..x..5..x....1..x..4..x
..x..0..x..1....x..2..x..5....x..0..x..4....x..1..x..3....x..0..x..6
..3..x..7..x....1..x..6..x....5..x..6..x....6..x..7..x....2..x..5..x
..x..6..x..9....x..4..x..7....x..1..x..8....x..2..x..4....x..3..x..8
..5..x..8..x....8..x..9..x....7..x..9..x....8..x..9..x....7..x..9..x
CROSSREFS
Column 4 of A215292.
Sequence in context: A099031 A066108 A205339 * A295611 A264641 A360824
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 07 2012
STATUS
approved