login
A215285
n such that sum_{k=1..n} (n - k | k) = phi(n), where (i|j) is the Kronecker symbol and phi(n) is the Euler totient function.
2
1, 2, 3, 4, 6, 9, 16, 36, 64, 100, 144, 196, 256, 324, 400, 484, 576, 676, 784, 900, 1024, 1156, 1296, 1444, 1600, 1764, 1936, 2116, 2304, 2500, 2704, 2916, 3136, 3364, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 6084, 6400, 6724, 7056, 7396, 7744
OFFSET
1,2
COMMENTS
n is in this sequence if and only if sum_{k=1..n} (n-k|k) = sum_{k=1..n} |(n-k|k)|.
MATHEMATICA
Reap[ Do[ If[ Sum[ KroneckerSymbol[n - k, k], {k, 1, n}] == EulerPhi[n], Print[n]; Sow[n]], {n, 1, 8000}]][[2, 1]] (* Jean-François Alcover, Jul 29 2013 *)
PROG
(Sage)
def A215200_row(n): return [kronecker_symbol(n-k, k) for k in (1..n)]
[n for n in (1..1000) if sum(A215200_row(n)) == euler_phi(n)]
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Aug 07 2012
STATUS
approved