login
A215158
Primes p such that (2*p - 1)*(4*p + 1)*(14*p - 1) divides Fibonacci(p).
1
727, 7507, 58417, 164767, 192697, 260317, 362977, 624847, 800557, 838837, 946417, 2107447, 2334187, 2382607, 2461717, 2495947, 2523517, 2566027, 2923747, 3169237, 3373177, 3373687, 3763717, 3771907, 3838897, 4143637, 4635277, 4741837, 4979047, 5097247
OFFSET
1,1
LINKS
Chris Caldwell, The Prime Glossary, Fibonacci number
C. K. Caldwell, "Top Twenty" page, Fibonacci cofactor
MATHEMATICA
Select[Prime@Range[10^3], Mod[Fibonacci[#], 112*#^3 - 36*#^2 - 12*# + 1] == 0 &]
PROG
(PARI) a=-1; b=1; for(n=0, 2548623, a=a+b; b=b+a; p=2*n+1; if(isprime(p)&&Mod(b, 112*p^3-36*p^2-12*p+1)==0, print1(p, ", "))); \\ Arkadiusz Wesolowski, Nov 16 2013
CROSSREFS
Subsequence of A159231.
Sequence in context: A158394 A038600 A157430 * A178654 A094733 A321822
KEYWORD
less,nonn
AUTHOR
STATUS
approved