OFFSET
0,2
COMMENTS
Compare to: Sum_{n>=0} d^n/dx^n x^(2*n)/n! = 1/sqrt(1-4*x).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 12*x^2 + 64*x^3 + 370*x^4 + 2184*x^5 + 13132*x^6 +...
such that, by definition:
A(x) = 1 + d/dx (x+x^2)^2 + d^2/dx^2 (x+x^2)^4/2! + d^3/dx^3 (x+x^2)^6/3! + d^4/dx^4 (x+x^2)^8/4! + d^5/dx^5 (x+x^2)^10/5! +...
PROG
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=1+sum(m=1, n, Dx(m, x^(2*m)*(1+x+x*O(x^n))^(2*m)/m!)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 04 2012
STATUS
approved