This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215125 E.g.f.: Sum_{n>=0} d^n/dx^n (x + x^2)^(2*n) / (2*n)!. 1
 1, 1, 7, 33, 223, 1753, 14391, 137137, 1382383, 14981673, 174494983, 2135204161, 27643067007, 375548195833, 5326762882903, 78889684038993, 1213984929832591, 19377034523034697, 320293617185965863, 5468629894127442913, 96328047496084810783, 1747805367475759936281 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Compare to the identity: exp(x) = Sum_{n>=0} d^n/dx^n x^(2*n) / (2*n)!. LINKS EXAMPLE E.g.f.: A(x) = 1 + x + 7*x^2/2! + 33*x^3/3! + 223*x^4/4! + 1753*x^5/5! +... such that, by definition: A(x) = 1 + d/dx (x+x^2)^2/2! + d^2/dx^2 (x+x^2)^4/4! + d^3/dx^3 (x+x^2)^6/6! + d^4/dx^4 (x+x^2)^8/8! + d^5/dx^5 (x+x^2)^10/10! +... Compare to the trivial identity: exp(x) = 1 + d/dx x^2/2! + d^2/dx^2 x^4/4! + d^3/dx^3 x^6/6! + d^4/dx^4 x^8/8! + d^5/dx^5 x^10/10! +... PROG (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} {a(n)=local(A=x); A=1+sum(m=1, n, Dx(m, (x+x^2+x*O(x^n))^(2*m)/(2*m)!)); n!*polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A215128. Sequence in context: A085636 A064306 A292427 * A204706 A197995 A207150 Adjacent sequences:  A215122 A215123 A215124 * A215126 A215127 A215128 KEYWORD nonn AUTHOR Paul D. Hanna, Aug 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 05:43 EDT 2019. Contains 325168 sequences. (Running on oeis4.)