login
A215091
Power floor-ceiling sequence of sqrt(5).
5
2, 5, 11, 25, 55, 123, 275, 615, 1375, 3075, 6875, 15373, 34375, 76865, 171875, 384325, 859376, 1921624, 4296881, 9608119, 21484407, 48040595, 107422036, 240202975, 537110180, 1201014874, 2685550900, 6005074370, 13427754501
OFFSET
0,1
COMMENTS
See A214992 for a discussion of power floor-ceiling sequence and the power floor-ceiling function, p2(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = sqrt(5), and the limit p2(r) = 2.20000329748317471983660768168522753590...
LINKS
FORMULA
a(n) = ceiling(x*a(n-1)) if n is odd, a(n) = floor(x*a(n-1)) if n is even, where x = sqrt(5) and a(0) = floor(x).
EXAMPLE
a(0) = floor(r) = 2, where r = sqrt(5);
a(1) = ceiling(2*r) = 5; a(2) = floor(5*r) = 11.
MATHEMATICA
(See A214999.)
nxt[{n_, a_}]:={n+1, If[OddQ[n], Floor[Sqrt[5]*a], Ceiling[Sqrt[5]*a]]}; Transpose[ NestList[nxt, {0, 2}, 30]][[2]] (* Harvey P. Dale, Oct 27 2015 *)
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Clark Kimberling, Nov 10 2012
STATUS
approved