login
A215053
a(n) = 1/7*( binomial(n,7) - floor(n/7) ).
2
1, 5, 17, 47, 113, 245, 490, 919, 1634, 2778, 4546, 7198, 11074, 16611, 24363, 35022, 49443, 68671, 93971, 126861, 169148, 222968, 290828, 375653, 480836, 610292, 768516, 960645, 1192525, 1470781, 1802893, 2197276, 2663365, 3211705, 3854046
OFFSET
8,2
COMMENTS
Not the same as A011853.
Let p be a prime. Saikia and Vogrinc have proved that 1/p*{binomial(n,p) - floor(n/p)} is an integer sequence. The present sequence is the case p = 7. Other cases are A002620 (p = 2), A014125 (p = 3), A215052 (p = 5) and A215054 (p = 11).
LINKS
Alexandre Laugier and Manjil Saikia, A characterization of a prime p from the binomial coefficient binomial(n,p), arXiv:1209.2373 [math.NT], The Mathematics Student, Vol. 83 (1-4), pp 1-7, 2014
M. P. Saikia and J. Vogrinc, A simple number theoretic result, arXiv:1207.6707v1 [math.NT]
Index entries for linear recurrences with constant coefficients, signature (7, -21, 35, -35, 21, -7, 2, -7, 21, -35, 35, -21, 7, -1).
FORMULA
O.g.f.: sum {n>=0} a(n)*x^n = x^8*(1 - 2*x + 3*x^2 - 2*x^3 + x^4)/((1-x^7)*(1-x)^7) = x^8*(1 + 5*x + 17*x^2 + 47*x^3 + ...). The numerator polynomial 1 - 2*x + 3*x^2 - 2*x^3 + x^4 is the negative of the row generating polynomial for row 7 of A178904.
MATHEMATICA
Table[(Binomial[n, 7]-Floor[n/7])/7, {n, 8, 50}] (* or *) LinearRecurrence[ {7, -21, 35, -35, 21, -7, 2, -7, 21, -35, 35, -21, 7, -1}, {1, 5, 17, 47, 113, 245, 490, 919, 1634, 2778, 4546, 7198, 11074, 16611}, 40] (* Harvey P. Dale, Dec 23 2014 *)
PROG
(PARI) a(n) = (binomial(n, 7) - n\7) / 7; \\ Michel Marcus, Jan 23 2014
(Magma) [(Binomial(n, 7)-Floor(n/7))/7: n in [8..50]]; // Vincenzo Librandi, Jun 23 2015
CROSSREFS
Cf. A002620 (p = 2), A014125 (p = 3), A178904, A215052 (p = 5), A215054 (p = 11).
Sequence in context: A338972 A332358 A011853 * A213767 A320854 A136303
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Aug 01 2012
STATUS
approved