This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215041 a(n) = n^(degree(C(n,x))/discriminant(C(n,x)) for the minimal polynomials C(n,x) of 2*cos(Pi/n), given in A187360. 0
 1, 2, 3, 2, 5, 3, 7, 2, 9, 5, 11, 9, 13, 7, 45, 2, 17, 27, 19, 25, 189, 11, 23, 81, 125, 13, 243, 49, 29, 2025, 31, 2, 2673, 17, 6125, 729, 37, 19, 9477, 625, 41, 35721, 43, 121, 91125, 23, 47, 6561, 2401, 3125, 111537, 169, 53, 19683, 378125 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The discriminants for C(n,x), the minimal polynomial of 2*cos(Pi/n) are found under A193681. The degree of C(n,x), called delta(n), is given as A055034(n). Compare this sequence with A193679, the anologon for the cyclotomic polynomials. See also the P. Ribenboim reference given in A004124. REFERENCES Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257.  Mathematical Reviews, MR2312537.  Zentralblatt MATH, Zbl 1133.11012. LINKS FORMULA a(n) = (n^delta(n))/Discriminant(C(n,x)), n>=1, with the minimal polynomials C(n,x) of 2*cos(Pi/n), with coefficient triangle given in A187360, and their degree delta(n) given in A055034(n). a(1) = 1. Conjectures for a(n), n>=2: i) a(2^k) = 2, k>=1;   ii) a(p^k) = p^((p^(k-1)+1)/2), for odd prime p and k>=1;   iii) a(n) = product(p^(delta(n)/(p-1)), odd p|n) otherwise. EXAMPLE a(30) = 30^delta(30)/A193681(30) = 30^8/324000000 = 2025. For the conjectures: i) a(4) = 2; ii) a^(3^2) = a(9) = 3^((3+1)/2) = 9; iii) a(30) = a(2*3*5) = 3^(delta(30)/2)*5^(delta(30)/4) = 3^4*5^2 = 2025;   a(40) = a(2^3*5) = 5^(delta(40)/4) = 5^4 = 625; a(45) = a(3^2*5) = 3^(delta(45)/2)* 5^(delta(45)/4) = 91125; CROSSREFS Cf. A193681, A055034, A193679 (cyclotomic case). Sequence in context: A164858 A192330 A320028 * A284695 A081812 A139421 Adjacent sequences:  A215038 A215039 A215040 * A215042 A215043 A215044 KEYWORD nonn AUTHOR Wolfdieter Lang, Aug 24 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 22 10:07 EDT 2019. Contains 321421 sequences. (Running on oeis4.)