login
a(n) = least k>0 such that triangular(n) divides Fibonacci(k).
3

%I #32 Oct 01 2024 15:44:50

%S 1,4,12,15,20,8,24,12,60,10,60,84,56,40,60,18,36,36,90,120,40,120,24,

%T 300,175,252,72,168,140,60,60,60,180,360,120,228,342,252,420,60,40,88,

%U 660,60,120,48,48,168,1400,900,252,189,108,180,120,72,252,406,1740

%N a(n) = least k>0 such that triangular(n) divides Fibonacci(k).

%C Triangular(n)=n*(n+1)/2 is the n-th triangular number.

%e Triangular(2)=3, least k>0 such that 3 divides Fibonacci(k) is k=4, so a(2)=4.

%t lk[n_]:=Module[{k=1,t=(n(n+1))/2},While[Mod[Fibonacci[k],t]!=0,k++];k]; Array[lk,60] (* _Harvey P. Dale_, Jun 19 2021 *)

%o (Python)

%o TOP = 333

%o prpr = y = 0

%o prev = k = 1

%o res = [-1]*TOP

%o while y<TOP-1:

%o for i in range(1, TOP):

%o if res[i]<0 and prev % int(i*(i+1)/2) == 0:

%o res[i] = k

%o y += 1

%o curr = prpr+prev

%o prpr = prev

%o prev = curr

%o k += 1

%o for i in range(1, TOP):

%o print(res[i], end=', ')

%Y Cf. A085779 (least k such that triangular(n) divides k!).

%Y Cf. A001177 (least k such that n divides Fibonacci(k)).

%Y Cf. A132632 (least k such that n^2 divides Fibonacci(k)).

%Y Cf. A132633 (least k such that n^3 divides Fibonacci(k)).

%Y Cf. A215453 (least k such that n^n divides Fibonacci(k)).

%Y Cf. A214528 (least k such that n! divides Fibonacci(k)).

%Y Cf. A000217, A000045.

%K nonn

%O 1,2

%A _Alex Ratushnyak_, Aug 08 2012