OFFSET
0,1
COMMENTS
See A214992 for a discussion of power ceiling sequence and the power ceiling function, p4(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = (golden ratio)^5, and the limit p4(r) = (1/30)*(105+47*sqrt(5)).
See A214993 for the power floor sequence and power floor function, p1. For comparison with p4, we have p4(r)/p1(r) = (5 + 3*sqrt(5))/10.
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..250
Index entries for linear recurrences with constant coefficients, signature (12,-10,-1).
FORMULA
a(n) = ceiling(x*a(n-1)), x=((1+sqrt(5))/2)^5, a(0) = ceiling(x).
a(n) = 12*a(n-1) - 10*a(n-2) - a(n-3).
G.f.: (12 - 10*x - x^2)/(1 - 12*x + 10*x^2 + x^3).
a(n) = (1/550)*(-50 + (3325-1487*sqrt(5))*((11-5*sqrt(5))/2)^n + ((11+5*sqrt(5))/2)^n*(3325+1487*sqrt(5))). - Colin Barker, Nov 13 2017
EXAMPLE
a(0) = ceiling(r) = [11.0902]=12, where r=(1+sqrt(5))^5.
a(1) = ceiling(12) = 134; a(2) = ceiling(134 ) = 1487.
MATHEMATICA
(See A214993.)
LinearRecurrence[{12, -10, -1}, {12, 134, 1487}, 30] (* G. C. Greubel, Feb 01 2018 *)
PROG
(PARI) Vec((12 - 10*x - x^2) / ((1 - x)*(1 - 11*x - x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017
(Magma) I:=[12, 134, 1487]; [n le 3 select I[n] else 12*Self(n-1) - 10*Self(n-2) - Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 01 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 09 2012
STATUS
approved