login
Power ceiling-floor sequence of (golden ratio)^4.
20

%I #61 Oct 31 2024 01:36:56

%S 7,47,323,2213,15169,103969,712615,4884335,33477731,229459781,

%T 1572740737,10779725377,73885336903,506417632943,3471038093699,

%U 23790849022949,163064905066945,1117663486445665,7660579500052711

%N Power ceiling-floor sequence of (golden ratio)^4.

%C Let f = floor and c = ceiling. For x > 1, define four sequences as functions of x, as follows:

%C p1(0) = f(x), p1(n) = f(x*p1(n-1));

%C p2(0) = f(x), p2(n) = c(x*p2(n-1)) if n is odd and p2(n) = f(x*p1(n-1)) if n is even;

%C p3(0) = c(x), p3(n) = f(x*p3(n-1)) if n is odd and p3(n) = c(x*p3(n-1)) if n is even;

%C p4(0) = c(x), p4(n) = c(x*p4(n-1)).

%C The present sequence is given by a(n) = p3(n).

%C Following the terminology at A214986, call the four sequences power floor, power floor-ceiling, power ceiling-floor, and power ceiling sequences. In the table below, a sequence is identified with an A-numbered sequence if they appear to agree except possibly for initial terms. Notation: S(t)=sqrt(t), r = (1+S(5))/2 = golden ratio, and Limit = limit of p3(n)/p2(n).

%C x ......p1..... p2..... p3..... p4.......Limit

%C r.......A000045 A000045 A000045 A000045..r

%C r^2.....A001519 A001654 A061646 A001906..-1+S(5)

%C r^3.....A024551 A001076 A015448 A049652..-1+S(5)

%C r^4.....A049685 A157335 A214992 A004187..-19+9*S(5)

%C r^5.....A214993 A049666 A015457 A214994...(-9+5*S(5))/2

%C r^6.....A007805 A156085 A214995 A049660..-151+68*S(5)

%C 1+S(2)..A024537 A000129 A001333 A048739..S(2)

%C 2+S(2)..A007052 A214996 A214997 A007070..(1+S(2))/2

%C 1+S(3)..A057960 A002605 A028859 A077846..(1+S(3))/2

%C 2+S(3)..A001835 A109437 A214998 A001353..-4+3*S(3)

%C S(5)....A214999 A215091 A218982 A218983..1.26879683...

%C 2+S(5)..A024551 A001076 A015448 A049652..-1+S(5)

%C 2+S(6)..A218984 A090017 A123347 A218985..S(3/2)

%C 2+S(7)..A218986 A015530 A126473 A218987..(1+S(7))/3

%C 2+S(8)..A218988 A057087 A086347 A218989..(1+S(2))/2

%C 3+S(8)..A001653 A084158 A218990 A001109..-13+10*S(2)

%C 3+S(10).A218991 A005668 A015451 A218992..-2+S(10)

%C ...

%C Properties of p1, p2, p3, p4:

%C (1) If x > 2, the terms of p2 and p3 interlace: p2(0) < p3(0) < p2(1) < p3(1) < p2(2) < p3(2)... Also, p1(n) <= p2(n) <= p3(n) <= p4(n) <= p1(n+1) for all x>0 and n>=0.

%C (2) If x > 2, the limits L(x) = limit(p/x^n) exist for the four functions p(x), and L1(x) <= L2(x) <= L3(x) <= L4 (x). See the Mathematica programs for plots of the four functions; one of them also occurs in the Odlyzko and Wilf article, along with a discussion of the special case x = 3/2.

%C (3) Suppose that x = u + sqrt(v) where v is a nonsquare positive integer. If u = f(x) or u = c(x), then p1, p2, p3, p4 are linear recurrence sequences. Is this true for sequences p1, p2, p3, p4 obtained from x = (u + sqrt(v))^q for every positive integer q?

%C (4) Suppose that x is a Pisot-Vijayaraghavan number. Must p1, p2, p3, p4 then be linearly recurrent? If x is also a quadratic irrational b + c*sqrt(d), must the four limits L(x) be in the field Q(sqrt(d))?

%C (5) The Odlyzko and Wilf article (page 239) raises three interesting questions about the power ceiling function; it appears that they remain open.

%H Clark Kimberling, <a href="/A214992/b214992.txt">Table of n, a(n) for n = 0..250</a>

%H A. M. Odlyzko and H. S. Wilf, <a href="https://doi.org/10.1017/S0017089500008272">Functional iteration and the Josephus problem</a>, Glasgow Math. J. 33, 235-240, 1991.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,6,-1).

%H <a href="/index/J#Josephus">Index entries for sequences related to the Josephus Problem</a>.

%F a(n) = floor(r*a(n-1)) if n is odd and a(n) = ceiling(r*a(n-1)) if n is even, where a(0) = ceiling(r), r = (golden ratio)^4 = (7 + sqrt(5))/2.

%F a(n) = 6*a(n-1) + 6*a(n-2) - a(n-3).

%F G.f.: (7 + 5*x - x^2)/((1 + x)*(1 - 7*x + x^2)).

%F a(n) = (10*(-2)^n+(10+3*sqrt(5))*(7-3*sqrt(5))^(n+2)+(10-3*sqrt(5))*(7+3*sqrt(5))^(n+2))/(90*2^n). - _Bruno Berselli_, Nov 14 2012

%F a(n) = 7*A157335(n) + 5*A157335(n-1) - A157335(n-2). - _R. J. Mathar_, Feb 05 2020

%F E.g.f.: exp(-x)*(5 + 2*exp(9*x/2)*(155*cosh(3*sqrt(5)*x/2) + 69*sqrt(5)*sinh(3*sqrt(5)*x/2)))/45. - _Stefano Spezia_, Oct 28 2024

%e a(0) = ceiling(r) = 7, where r = ((1+sqrt(5))/2)^4 = 6.8...; a(1) = floor(7*r) = 47; a(2) = ceiling(47) = 323.

%t (* Program 1. A214992 and related sequences *)

%t x = GoldenRatio^4; z = 30; (* z = # terms in sequences *)

%t z1 = 100; (* z1 = # digits in approximations *)

%t f[x_] := Floor[x]; c[x_] := Ceiling[x];

%t p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];

%t p1[n_] := f[x*p1[n - 1]]

%t p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]

%t p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]

%t p4[n_] := c[x*p4[n - 1]]

%t Table[p1[n], {n, 0, z}] (* A049685 *)

%t Table[p2[n], {n, 0, z}] (* A157335 *)

%t Table[p3[n], {n, 0, z}] (* A214992 *)

%t Table[p4[n], {n, 0, z}] (* A004187 *)

%t Table[p4[n] - p1[n], {n, 0, z}] (* A004187 *)

%t Table[p3[n] - p2[n], {n, 0, z}] (* A098305 *)

%t (* Program 2. Plot of power floor and power ceiling functions, p1(x) and p4(x) *)

%t f[x_] := f[x] = Floor[x]; c[x_] := c[x] = Ceiling[x];

%t p1[x_, 0] := f[x]; p1[x_, n_] := f[x*p1[x, n - 1]];

%t p4[x_, 0] := c[x]; p4[x_, n_] := c[x*p4[x, n - 1]];

%t Plot[Evaluate[{p1[x, 10]/x^10, p4[x, 10]/x^10}], {x, 2, 3}, PlotRange -> {0, 4}]

%t (* Program 3. Plot of power floor-ceiling and power ceiling-floor functions, p2(x) and p3(x) *)

%t f[x_] := f[x] = Floor[x]; c[x_] := c[x] = Ceiling[x];

%t p2[x_, 0] := f[x]; p3[x_, 0] := c[x];

%t p2[x_, n_] := If[Mod[n, 2] == 1, c[x*p2[x, n - 1]], f[x*p2[x, n - 1]]]

%t p3[x_, n_] := If[Mod[n, 2] == 1, f[x*p3[x, n - 1]], c[x*p3[x, n - 1]]]

%t Plot[Evaluate[{p2[x, 10]/x^10, p3[x, 10]/x^10}], {x, 2, 3}, PlotRange -> {0, 4}]

%Y Cf. A001622, A214986, A049685, A157335, A004187.

%K nonn,easy,changed

%O 0,1

%A _Clark Kimberling_, Nov 08 2012, Jan 24 2013