login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214979 A179180 - A214977. 5
0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 1, 1, 0, 0, 1, 2, 3, 2, 2, 1, 0, 1, 0, 0, 0, 1, 2, 3, 4, 6, 4, 3, 3, 2, 2, 1, 2, 2, 1, 1, 1, 0, 0, 1, 2, 3, 4, 6, 6, 7, 9, 7, 6, 5, 5, 5, 4, 4, 4, 2, 1, 2, 2, 3, 2, 2, 1, 0, 1, 0, 0, 0, 1, 2, 3, 4, 6, 6, 7, 9, 9, 10, 11, 13, 15, 13, 12, 11, 9, 8, 8, 8, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,12

COMMENTS

Let U(n) and V(n) be the number of terms in the Lucas representations and Zeckendorf (Fibonacci) representations, respectively, of all the numbers 1,2,...,n.  Then a(n) = V(n) - U(n).  Conjecture:  a(n) >= 0 for all n, and a(n) = 0 for infinitely many n.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

EXAMPLE

(See A214977 and A179180.)

MATHEMATICA

z = 200;

s = Reverse[Sort[Table[LucasL[n - 1], {n, 1, 70}]]];

t1 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, s]][[2, 1]], # > 0 &]] &, Range[z]];

u[n_] := Sum[t1[[k]], {k, 1, n}]

u1 = Table[u[n], {n, 1, z}] (* A214977 *)

s = Reverse[Table[Fibonacci[n + 1], {n, 1, 70}]];

t2 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, s]][[2, 1]], # > 0 &]] &, Range[z]];

v[n_] := Sum[t2[[k]], {k, 1, n}]

v1 = Table[v[n], {n, 1, z}]  (* A179180 *)

w=v1-u1 (* A214979 *)

Flatten[Position[w, 0]]  (* A214980 *)

(* Peter J. C. Moses, Oct 18 2012 *)

CROSSREFS

Cf. A214977, A179180, A214980, A214981, A000032, A000045.

Sequence in context: A316675 A111405 A089053 * A068462 A054973 A030351

Adjacent sequences:  A214976 A214977 A214978 * A214980 A214981 A214982

KEYWORD

nonn

AUTHOR

Clark Kimberling, Oct 22 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 04:19 EDT 2019. Contains 322237 sequences. (Running on oeis4.)