This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214966 Array T(m,n) = greatest k such that 1/n + ... + 1/(n+k-1) <= m, by rising diagonals. 1
 1, 3, 2, 10, 9, 4, 30, 29, 16, 6, 82, 81, 48, 22, 7, 226, 225, 134, 67, 28, 9, 615, 614, 370, 188, 86, 35, 11, 1673, 1672, 1012, 517, 241, 105, 41, 12, 4549, 4548, 2756, 1413, 664, 295, 124, 47, 14, 12366, 12365, 7498, 3847, 1814, 811, 348, 143, 54 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Row 1: A136617 Col 1:  A115515 = -1 + A002387 LINKS Clark Kimberling, Rising antidiagonals n = 1..60, flattened EXAMPLE Northwest corner (the array is read by northeast antidiagonals: 1.....2.....4......6......7......9 3.....9.....16.....22.....28.....35 10....29....48.....67.....86.....105 30....81....134....188....241....295 82....225...370....517....664....811 226...614...1012...1413...1814...2216 MATHEMATICA t = Table[1 + Floor[x /. FindRoot[HarmonicNumber[N[x + z, 150]] - HarmonicNumber[N[z - 1, 150]] == m, {x, Floor[-E^m/2 + (-1 + E^m) z]}, WorkingPrecision -> 100]], {m, 1, #}, {z, 1, #}] &[12] TableForm[t] u = Flatten[Table[t[[i - j]][[j]], {i, 2, 12}, {j, 1, i - 1}]] (* Peter J. C. Moses, Aug 29 2012 *) CROSSREFS Cf. A136617, A115515, A002387. Sequence in context: A056861 A302846 A214844 * A103245 A019242 A064367 Adjacent sequences:  A214963 A214964 A214965 * A214967 A214968 A214969 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Sep 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 22:08 EDT 2019. Contains 322237 sequences. (Running on oeis4.)