login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214955 Number of solid standard Young tableaux of shape [[n,n-1],[1]]. 2

%I

%S 1,6,25,98,378,1452,5577,21450,82654,319124,1234506,4784276,18572500,

%T 72209880,281150505,1096087770,4278278070,16717354500,65388738030,

%U 256000696380,1003116947820,3933750236520,15437682614250,60625494924228,238235373671148,936735006679752

%N Number of solid standard Young tableaux of shape [[n,n-1],[1]].

%C a(n) is odd if and only if n = 2^i-1 for i in {1, 2, 3, ... } = A000027.

%C Form an array with m(1,n)=n*(n+1)/2, m(n,1)=n*(n-1)+1, and m(i,j)=m(i,j-1) + m(i-1,j); A000217 in the top row, A002061 in the first column, A086514 in the second column. Then on the diagonal m(n,n)=a(n). - _J. M. Bergot_, May 02 2013

%H Alois P. Heinz, <a href="/A214955/b214955.txt">Table of n, a(n) for n = 1..1000</a>

%H S. B. Ekhad, D. Zeilberger, <a href="https://arxiv.org/abs/1202.6229">Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux</a>, arXiv:1202.6229v1 [math.CO], 2012

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a>

%F a(n) = 2*(2*n-1)^2/((n+1)*(2*n-3)) * a(n-1) for n>1; a(1) = 1.

%F a(n) = (2*n-1) * C(2*n,n)/(n+1) = A060747(n) * A000108(n).

%F a(n) = [x^n] x*(1 + 2*x)/(1 - x)^(n+2). - _Ilya Gutkovskiy_, Oct 12 2017

%p a:= proc(n) option remember;

%p `if`(n<2, n, 2*(2*n-1)^2*a(n-1)/((n+1)*(2*n-3)))

%p end:

%p seq(a(n), n=1..30);

%t a[n_]:= a[n] = If[n<2, n, 2*(2*n-1)^2*a[n-1]/((n+1)*(2*n-3))]; Array[a, 30] (* _Jean-Fran├žois Alcover_, Aug 14 2017, translated from Maple *)

%Y Column k=1 of A214775.

%Y Cf. A000108, A060747, A215002.

%K nonn

%O 1,2

%A _Alois P. Heinz_, Jul 30 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 22 14:18 EDT 2019. Contains 322349 sequences. (Running on oeis4.)