login
A214952
a(n) is the sum over all proper integer partitions with distinct parts of n of the previous terms.
1
1, 0, 1, 2, 4, 9, 20, 44, 100, 225, 507, 1145, 2592, 5858, 13275, 30043, 68054, 154132, 349182, 790954, 1792001, 4059646, 9197535, 20837459, 47209682, 106957699, 242325918, 549015961, 1243864083, 2818122854, 6384811753, 14465578718, 32773596120, 74252685312
OFFSET
1,4
COMMENTS
By "proper integer partition", one means that the case {n} is excluded for having only one part, equal to the number partitioned.
The growth of this function is exponential a(n) -> c * exp(n).
LINKS
FORMULA
a(n) = sum( sum( a(i), i in p) , p in P*(n)) where Q*(n) is the set of all integer partitions of n with distinct parts excluding {n}, p is a partition of Q*(n), i is a part of p.
EXAMPLE
a(6) = (a(5)+a(1)) + (a(4)+a(2)) + (a(3)+a(2)+a(1)) = (4+1) + (2+0) + (1+0+1) = 9.
MATHEMATICA
Clear[a]; a[1] := 1; a[n_Integer] := a[n] = Plus @@ Map[Function[p, Plus @@ Map[a, p]], Select[Drop[IntegerPartitions[n], 1], Union[#]==Sort[#]&]]; Table[ a[n], {n, 1, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Olivier Gérard, Jul 30 2012
STATUS
approved