login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A016090(n)/2^n.
4

%I #9 Aug 01 2012 20:38:14

%S 3,19,47,586,293,1709,55542,340271,1537323,1745224,39935112,19967556,

%T 9983778,2446398139,22585503757,57069119066,333710340783,

%U 2837143256329,14770012057852,7385006028926,289794797936338,621734557171294,2695053069601272,1347526534800636

%N A016090(n)/2^n.

%C Conjecture: For any m coprime to 5 and for any k, the density of n such that a(n) == k (mod m) is 1/m.

%H Eric M. Schmidt, <a href="/A214883/b214883.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Ar#automorphic">Index entries for sequences related to automorphic numbers</a>

%o (GAP) A214883 := function(max) local result, i; result := [6]; for i in [2..max] do Add(result, (2*result[i-1] - result[i-1]^2) mod 10^i); od; result := List([1..max], n->result[n]/2^n); return result; end;

%Y Cf. A214880, A214881, A214882.

%K nonn,base

%O 1,1

%A _Eric M. Schmidt_, Jul 31 2012