This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214829 a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = a(2) = 7. 10
 1, 7, 7, 15, 29, 51, 95, 175, 321, 591, 1087, 1999, 3677, 6763, 12439, 22879, 42081, 77399, 142359, 261839, 481597, 885795, 1629231, 2996623, 5511649, 10137503, 18645775, 34294927, 63078205, 116018907, 213392039, 392489151, 721900097, 1327781287, 2442170535 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS See comments in A214727. LINKS Robert Price, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,1,1). FORMULA G.f.: (1+6*x-x^2)/(1-x-x^2-x^3). a(n) = -A000073(n) + 6*A000073(n+1) + A000073(n+2). - G. C. Greubel, Apr 24 2019 MATHEMATICA LinearRecurrence[{1, 1, 1}, {1, 7, 7}, 40] (* G. C. Greubel, Apr 24 2019 *) PROG (PARI) Vec((x^2-6*x-1)/(x^3+x^2+x-1) + O(x^40)) \\ Michel Marcus, Jun 04 2017 (MAGMA) R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+6*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 24 2019 (Sage) ((1+6*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 24 2019 (GAP) a:=[1, 7, 7];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 24 2019 CROSSREFS Cf. A000213, A000288, A000322, A000383, A060455, A136175, A141036, A141523, A214825, A214826, A214827, A214828, A214830, A214831. Sequence in context: A245426 A168379 A179886 * A168411 A120682 A152910 Adjacent sequences:  A214826 A214827 A214828 * A214830 A214831 A214832 KEYWORD nonn,easy AUTHOR Abel Amene, Aug 07 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 03:37 EDT 2019. Contains 325290 sequences. (Running on oeis4.)