login
Frobenius numbers of numerators and denominators of rational numbers in order of their canonical enumeration.
4

%I #6 Jul 13 2013 12:04:30

%S -1,-1,1,-1,5,-1,3,7,11,-1,19,-1,5,11,17,23,29,-1,13,27,41,-1,7,23,31,

%T 47,55,-1,17,53,71,-1,9,19,29,39,49,59,69,79,89,-1,43,65,109,-1,11,23,

%U 35,47,59,71,83,95,107,119,131,-1,25,51,103,129,155,-1,13

%N Frobenius numbers of numerators and denominators of rational numbers in order of their canonical enumeration.

%C a(n) = A020652(n) * A038567(n) - A020652(n) - A038567(n);

%C for n > 1: a(A015614(n)) = A165900(n-1);

%C a(A002088(n)) = -1.

%H Reinhard Zumkeller, <a href="/A214803/b214803.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FrobeniusNumber.html">Frobenius Number</a>.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Coin_problem">Coin problem</a>

%o (Haskell)

%o a214803 n = a214803_list !! (n-1)

%o a214803_list = [x * y - x - y | y <- [1..], x <- [1..y-1], gcd x y == 1]

%K sign

%O 1,5

%A _Reinhard Zumkeller_, Jul 29 2012