login
A214773
Primes such that all pairwise sums are squarefree.
1
2, 3, 11, 19, 59, 83, 127, 163, 199, 227, 271, 311, 383, 419, 443, 811, 911, 919, 1063, 1163, 1171, 1319, 1427, 1559, 2099, 2143, 2543, 2683, 2999, 3259, 4519, 5099, 5171, 5711, 5783, 6211, 6719, 8111, 8219, 9203, 11003, 12227, 12511, 12659, 13259, 13883
OFFSET
1,1
COMMENTS
a(n+1) is the smallest prime p > a(n) such that all sums a(i)+p, i-1..n are squarefree. All odd terms = 3 mod 4.
The sequence is apparently infinite.
MATHEMATICA
sumsSqFree[t_, p_] := And @@ SquareFreeQ /@ (t + p); t = {2}; Do[p = NextPrime[t[[-1]]]; While[! sumsSqFree[t, p], p = NextPrime[p]]; AppendTo[t, p], {50}]; t (* T. D. Noe, Jul 30 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Jul 28 2012
STATUS
approved