OFFSET
0,2
COMMENTS
Compare to: W(x) = 1/W(-x*W(x)^8) when W(x) = Sum_{n>=0} (4*n+1)^(n-1)*x^n/n!.
An infinite number of functions G(x) satisfy (*) G(x) = 1/G(-x*G(x)^8); for example, (*) is satisfied by G(x) = W(m*x), where W(x) = Sum_{n>=0} (4*n+1)^(n-1)*x^n/n!.
FORMULA
The g.f. of this sequence is the limit of the recurrence:
(*) G_{n+1}(x) = (G_n(x) + 1/G_n(-x*G_n(x)^8))/2 starting at G_0(x) = 1+2*x.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 18*x^2 + 180*x^3 + 1734*x^4 + 18300*x^5 + 270420*x^6 +...
A(x)^8 = 1 + 16*x + 256*x^2 + 3904*x^3 + 56320*x^4 + 793984*x^5 + 11567104*x^6 +...
PROG
(PARI) {a(n)=local(A=1+2*x); for(i=0, n, A=(A+1/subst(A, x, -x*A^8+x*O(x^n)))/2); polcoeff(A, n)}
for(n=0, 31, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 29 2012
STATUS
approved