The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214694 G.f. A(x) satisfies: x = Sum_{n>=1} 1/A(x)^(8*n) * Product_{k=1..n} (1 - 1/A(x)^(2*k-1)). 8

%I

%S 1,1,6,69,929,13692,213402,3456450,57585400,980408857,16982002433,

%T 298322996205,5302587890821,95196447689434,1723782813066284,

%U 31447947375375315,577509675356805547,10667460556561578780,198074286156460874227,3695152948440645726312

%N G.f. A(x) satisfies: x = Sum_{n>=1} 1/A(x)^(8*n) * Product_{k=1..n} (1 - 1/A(x)^(2*k-1)).

%C Compare the g.f. to the identity:

%C G(x) = Sum_{n>=0} 1/G(x)^(2*n) * Product_{k=1..n} (1 - 1/G(x)^(2*k-1))

%C which holds for all power series G(x) such that G(0)=1.

%F G.f. satisfies: 1+x = A(y) where y = x - 6*x^2 + 3*x^3 + 61*x^4 + 15*x^5 - 567*x^6 - 1946*x^7 - 3607*x^8 - 4489*x^9 - 4015*x^10 - 2640*x^11 - 1274*x^12 - 441*x^13 - 104*x^14 - 15*x^15 - x^16, which is the g.f. of row 4 in triangle A214690.

%F G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(n*(n+8)) * Product_{k=1..n} (A(x)^(2*k-1) - 1).

%e G.f.: A(x) = 1 + x + 6*x^2 + 69*x^3 + 929*x^4 + 13692*x^5 + 213402*x^6 +...

%e The g.f. satisfies:

%e x = (A(x)-1)/A(x)^9 + (A(x)-1)*(A(x)^3-1)/A(x)^20 + (A(x)-1)*(A(x)^3-1)*(A(x)^5-1)/A(x)^33 + (A(x)-1)*(A(x)^3-1)*(A(x)^5-1)*(A(x)^7-1)/A(x)^48 +

%e (A(x)-1)*(A(x)^3-1)*(A(x)^5-1)*(A(x)^7-1)*(A(x)^9-1)/A(x)^65 +...

%o (PARI) {a(n)=if(n<0, 0, polcoeff(1 + serreverse(x - 6*x^2 + 3*x^3 + 61*x^4 + 15*x^5 - 567*x^6 - 1946*x^7 - 3607*x^8 - 4489*x^9 - 4015*x^10 - 2640*x^11 -

%o 1274*x^12 - 441*x^13 - 104*x^14 - 15*x^15 - x^16 +x^2*O(x^n)), n))}

%o (PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-polcoeff(sum(m=1, #A, 1/Ser(A)^(8*m)*prod(k=1, m, 1-1/Ser(A)^(2*k-1))), #A-1)); A[n+1]}

%o for(n=0, 25, print1(a(n), ", "))

%Y Cf. A214690, A214692, A214693, A214695, A181998 (variant).

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jul 26 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 05:39 EDT 2020. Contains 333105 sequences. (Running on oeis4.)