login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214679 T(n,k) = Fibonacci(n) represented in bijective base-k numeration; square array A(n,k), n>=1, k>=1, read by antidiagonals. 10
1, 1, 1, 1, 1, 11, 1, 1, 2, 111, 1, 1, 2, 11, 11111, 1, 1, 2, 3, 21, 11111111, 1, 1, 2, 3, 12, 112, 1111111111111, 1, 1, 2, 3, 11, 22, 221, 111111111111111111111, 1, 1, 2, 3, 5, 14, 111, 1221, 1111111111111111111111111111111111 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

The digit set for bijective base-k numeration is {1, 2, ..., k}.

LINKS

Alois P. Heinz, Antidiagonals n = 1..13

R. R. Forslund, A logical alternative to the existing positional number system, Southwest Journal of Pure and Applied Mathematics, Vol. 1, 1995, 27-29.

Eric Weisstein's World of Mathematics, Zerofree

Wikipedia, Bijective numeration

FORMULA

T(n,k) = A214676(A000045(n),k).

EXAMPLE

Square array A(n,k) begins:

:                     1,    1,   1,   1,   1,  1,  1,  1,  1, ...

:                     1,    1,   1,   1,   1,  1,  1,  1,  1, ...

:                    11,    2,   2,   2,   2,  2,  2,  2,  2, ...

:                   111,   11,   3,   3,   3,  3,  3,  3,  3, ...

:                 11111,   21,  12,  11,   5,  5,  5,  5,  5, ...

:              11111111,  112,  22,  14,  13, 12, 11,  8,  8, ...

:         1111111111111,  221, 111,  31,  23, 21, 16, 15, 14, ...

: 111111111111111111111, 1221, 133, 111,  41, 33, 27, 25, 23, ...

MAPLE

with(combinat):

A:= proc(n, b) local d, l, m; m:= fibonacci(n); l:= NULL;

      while m>0 do  d:= irem(m, b, 'm');

        if d=0 then d:=b; m:=m-1 fi;

        l:= d, l

      od; parse(cat(l))

    end:

seq(seq(A(n, 1+d-n), n=1..d), d=1..10);

MATHEMATICA

A[n_, b_] := Module[{d, l, m}, m = Fibonacci@n; l = Nothing; While[m > 0, {m, d} = QuotientRemainder[m, b]; If[d == 0, d = b; m--]; l = {d, l}]; FromDigits @ Flatten @ l];

Table[A[n, d-n+1], {d, 1, 10}, {n, 1, d}] // Flatten (* Jean-Fran├žois Alcover, May 28 2019, from Maple *)

CROSSREFS

Columns k=1-9 give: A108047, A085652, A282234, A282235, A282236, A282237, A282238, A282239, A282240.

Cf. A000045, A214676.

Sequence in context: A145140 A010195 A010193 * A010192 A214326 A105769

Adjacent sequences:  A214676 A214677 A214678 * A214680 A214681 A214682

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jul 25 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 18 11:30 EDT 2019. Contains 325138 sequences. (Running on oeis4.)