login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214674 Conway's subprime Fibonacci sequence. 14
1, 1, 2, 3, 5, 4, 3, 7, 5, 6, 11, 17, 14, 31, 15, 23, 19, 21, 20, 41, 61, 51, 56, 107, 163, 135, 149, 142, 97, 239, 168, 37, 41, 39, 40, 79, 17, 48, 13, 61, 37, 49, 43, 46, 89, 45, 67, 56, 41, 97, 69, 83, 76, 53, 43, 48, 13 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Similar to the Fibonacci recursion starting with (1, 1), but each new nonprime term is divided by its least prime factor. Sequence enters a loop of length 18 after 38 terms on reaching (48, 13).

REFERENCES

Siobhan Roberts, Genius At Play: The Curious Mind of John Horton Conway, Bloomsbury, 2015, pages xx-xxi.

LINKS

Peter Kagey, Table of n, a(n) for n = 1..250

Richard K. Guy, Tanya Khovanova and Julian Salazar, Conway's subprime Fibonacci sequences, arXiv:1207.5099 [math.NT], 2012-2014.

Tanya Khovanova, Conway’s Subprime Fibonacci Sequences, Math Blog, July 2012.

MATHEMATICA

guyKhoSal[{a_, b_}] := Block[{c, l, r}, c = NestWhile[(p = Tr[Take[#, -2]]; If[PrimeQ[p], q = p, q = p/Part[FactorInteger[p, FactorComplete -> False], 1, 1]]; Flatten[{#, q}]) &, {a, b}, FreeQ[Partition[#1, 2, 1], Take[#2, -2]] &, 2, 1000]; l = Length[c]; r = Tr@Position[Partition[c, 2, 1], Take[c, -2], 1, 1]; l-r-1; c]; guyKhoSal[{1, 1}]

f[s_List] := Block[{a = s[[-2]] + s[[-1]]}, If[ PrimeQ[a], Append[s, a], Append[s, a/FactorInteger[a][[1, 1]] ]]]; Nest[f, {1, 1}, 73] (* Robert G. Wilson v, Aug 09 2012 *)

PROG

(PARI) fatw(n, a=[0, 1], p=[])={for(i=2, n, my(f=factor(a[i]+a[i-1])~); for(k=1, #f, setsearch(p, f[1, k])&next; f[2, k]--; p=setunion(p, Set(f[1, k])); break); a=concat(a, factorback(f~))); a}

fatw(99) /* M. F. Hasler, Jul 25 2012 */

CROSSREFS

Cf. A000045, A020639, A175723, A214551, A014682, etc.

Cf. A214892-A214898, A282812, A282813, A282814.

See also A165911, A272636, A255562, etc.

Sequence in context: A117339 A096016 A123274 * A185332 A023818 A102149

Adjacent sequences:  A214671 A214672 A214673 * A214675 A214676 A214677

KEYWORD

nonn,easy

AUTHOR

Wouter Meeussen, Jul 25 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 17 00:14 EST 2018. Contains 318191 sequences. (Running on oeis4.)