login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214674 Conway's subprime Fibonacci sequence. 14
1, 1, 2, 3, 5, 4, 3, 7, 5, 6, 11, 17, 14, 31, 15, 23, 19, 21, 20, 41, 61, 51, 56, 107, 163, 135, 149, 142, 97, 239, 168, 37, 41, 39, 40, 79, 17, 48, 13, 61, 37, 49, 43, 46, 89, 45, 67, 56, 41, 97, 69, 83, 76, 53, 43, 48, 13 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Similar to the Fibonacci recursion starting with (1, 1), but each new nonprime term is divided by its least prime factor. Sequence enters a loop of length 18 after 38 terms on reaching (48, 13).

REFERENCES

Siobhan Roberts, Genius At Play: The Curious Mind of John Horton Conway, Bloomsbury, 2015, pages xx-xxi.

LINKS

Peter Kagey, Table of n, a(n) for n = 1..250

Richard K. Guy, Tanya Khovanova and Julian Salazar, Conway's subprime Fibonacci sequences, arXiv:1207.5099 [math.NT], 2012-2014.

Tanya Khovanova, Conway’s Subprime Fibonacci Sequences, Math Blog, July 2012.

MATHEMATICA

guyKhoSal[{a_, b_}] := Block[{c, l, r}, c = NestWhile[(p = Tr[Take[#, -2]]; If[PrimeQ[p], q = p, q = p/Part[FactorInteger[p, FactorComplete -> False], 1, 1]]; Flatten[{#, q}]) &, {a, b}, FreeQ[Partition[#1, 2, 1], Take[#2, -2]] &, 2, 1000]; l = Length[c]; r = Tr@Position[Partition[c, 2, 1], Take[c, -2], 1, 1]; l-r-1; c]; guyKhoSal[{1, 1}]

f[s_List] := Block[{a = s[[-2]] + s[[-1]]}, If[ PrimeQ[a], Append[s, a], Append[s, a/FactorInteger[a][[1, 1]] ]]]; Nest[f, {1, 1}, 73] (* Robert G. Wilson v, Aug 09 2012 *)

PROG

(PARI) fatw(n, a=[0, 1], p=[])={for(i=2, n, my(f=factor(a[i]+a[i-1])~); for(k=1, #f, setsearch(p, f[1, k])&next; f[2, k]--; p=setunion(p, Set(f[1, k])); break); a=concat(a, factorback(f~))); a}

fatw(99) /* M. F. Hasler, Jul 25 2012 */

CROSSREFS

Cf. A000045, A020639, A175723, A214551, A014682, etc.

Cf. A214892-A214898, A282812, A282813, A282814.

See also A165911, A272636, A255562, etc.

Sequence in context: A117339 A096016 A123274 * A185332 A023818 A102149

Adjacent sequences:  A214671 A214672 A214673 * A214675 A214676 A214677

KEYWORD

nonn,easy

AUTHOR

Wouter Meeussen, Jul 25 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 13:08 EST 2021. Contains 349581 sequences. (Running on oeis4.)