|
|
A214662
|
|
Greatest prime divisor of 1 + 2^2 + 3^3 + ... + n^n.
|
|
1
|
|
|
5, 2, 3, 3413, 50069, 8089, 487, 2099, 10405071317, 1274641129, 164496735539, 3514531963, 15624709, 23747111, 10343539, 56429700667, 1931869473647715169, 2383792821710269, 144326697012150473, 2053857208873393249, 128801386946535261205906957, 2298815880166789
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 2..73
|
|
FORMULA
|
a(n) = A006530(A001923(n)).
|
|
EXAMPLE
|
a(2) = 5 divides 1 + 2^2 ;
a(3) = 2 divides 1 + 2^2 + 3^3 = 32 ;
a(4) = 3 divides 1 + 2^2 + 3^3 + 4^4 = 288 = 2^5*3^2 ;
a(5) = 3413 divides 1 + 2^2 + 3^3 + 4^4 + 5^5 = 3413.
a(13) = 3514531963 divides 1 + 2^2 + 3^3 + ... + 13^13 = 88799 * 3514531963.
|
|
MAPLE
|
with (numtheory):
s:= proc(n) option remember; `if`(n=1, 1, s(n-1)+n^n) end:
a:= n-> max(factorset(s(n))[]):
seq (a(n), n=2..23); # Alois P. Heinz, Jul 24 2012
|
|
MATHEMATICA
|
s = 1; Table[s = s + n^n; FactorInteger[s][[-1, 1]], {n, 2, 24}] (* T. D. Noe, Jul 25 2012 *)
|
|
PROG
|
(PARI) a(n) = vecmax(factor(sum(k=1, n, k^k))[, 1]); \\ Michel Marcus, Feb 09 2020
(MAGMA) [Max(PrimeDivisors(&+[k^k:k in [1..n]])):n in [2..23]]; // Marius A. Burtea, Feb 09 2020
|
|
CROSSREFS
|
Cf. A001923, A006530, A073826, A122166, A175232.
Sequence in context: A291690 A073943 A193797 * A277581 A307381 A256167
Adjacent sequences: A214659 A214660 A214661 * A214663 A214664 A214665
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Michel Lagneau, Jul 24 2012
|
|
STATUS
|
approved
|
|
|
|