|
|
A214661
|
|
Odd numbers by transposing the left half of A176271, triangle read by rows: T(n,k) = A176271(n - 1 + k, k), 1 <= k <= n.
|
|
9
|
|
|
1, 3, 9, 7, 15, 25, 13, 23, 35, 49, 21, 33, 47, 63, 81, 31, 45, 61, 79, 99, 121, 43, 59, 77, 97, 119, 143, 169, 57, 75, 95, 117, 141, 167, 195, 225, 73, 93, 115, 139, 165, 193, 223, 255, 289, 91, 113, 137, 163, 191, 221, 253, 287, 323, 361, 111, 135, 161
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Sums of rows: A051673; central terms: A214675;
T(n,1) = A002061(n); T(n,n) = A016754(n-1);
T(n,k) = A214604(n,k) - 2*A025581(n,k) = 2*A000290(A094727(n,k)) - A214604(n,k).
|
|
LINKS
|
Reinhard Zumkeller, Rows n = 1..150 of triangle, flattened
|
|
FORMULA
|
T(n,k) = (n+k)^2 - 3*n - k + 1.
|
|
EXAMPLE
|
. Take the first n elements of the n-th diagonal (northwest to
. southeast) of the triangle on the left side
. and write this as n-th row on the triangle of the right side.
. 1: 1 1
. 2: 3 _ 3 9
. 3: 7 9 __ 7 15 25
. 4: 13 15 __ __ 13 23 35 49
. 5: 21 23 25 __ __ 21 33 47 63 ..
. 6: 31 33 35 __ __ __ 31 45 61 .. .. ..
. 7: 43 45 47 49 __ __ __ 43 59 .. .. .. .. ..
. 8: 57 59 61 63 __ __ __ __ 57 .. .. .. .. .. .. .. .
|
|
PROG
|
(Haskell)
import Data.List (transpose)
a214661 n k = a214661_tabl !! (n-1) !! (k-1)
a214661_row n = a214661_tabl !! (n-1)
a214661_tabl = zipWith take [1..] $ transpose $ map reverse a176271_tabl
|
|
CROSSREFS
|
Cf. A214604.
Sequence in context: A267363 A146179 A294734 * A178414 A220654 A302158
Adjacent sequences: A214658 A214659 A214660 * A214662 A214663 A214664
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Reinhard Zumkeller, Jul 25 2012
|
|
STATUS
|
approved
|
|
|
|