login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214636 A213437 becomes periodic mod n starting at this position. 3
1, 1, 3, 2, 1, 3, 4, 3, 3, 1, 5, 3, 1, 4, 3, 4, 3, 3, 6, 2, 4, 5, 7, 3, 2, 1, 3, 4, 10, 3, 5, 4, 5, 3, 4, 3, 6, 6, 3, 3, 1, 4, 8, 5, 3, 7, 11, 4, 4, 2, 3, 2, 8, 3, 5, 4, 6, 10, 9, 3, 6, 5, 4, 5, 1, 5, 11, 3, 7, 4, 8, 3, 4, 6, 3, 6, 5, 3, 5, 4, 3, 1, 7, 4, 3, 8, 10, 5, 3, 3, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Table of n, a(n) for n=1..91.

FORMULA

Empirically,

A214636(2^n) = (1,2,3,4,4,5,6,6,7,8,8,...) = A004523(n+2) for n>1.

A214636(3^n) = 3, A214636(7^n) = 4, A214636(11^n) = 5 for all n>0.

A214636(5^n) = A214636(10^n) = (1,2,5,8,11,...) = A016789(n-2) for n>1.

A214636(6^n) = (3,3,3,4,4,5,6,6,...) = A214636(2^n) for n>2.

A214636(15^n) = (3,3,5,8,11,...) = A214636(5^n) for n>2. - M. F. Hasler, Jul 24 2012

PROG

(PARI) A214636(n, N=199)={my(a=[Mod(1, n)]); for(n=1, N-1, a=concat(a, a[n]+(a[n]+1)*prod(k=1, n-1, a[k]))); for(p=1, N\3, forstep(m=N, p+1, -1, a[m]==a[m-p]&next; 3*m>N&next(2); return(m-p+1)); return(1))} /* the 2nd optional parameter must be taken large enough, at least 3 times the period length and starting position. The script returns zero if the period is not found (most probably due to these constraints). */

CROSSREFS

Cf. A213437, A214635.

Sequence in context: A238556 A102288 A081248 * A318582 A318317 A129690

Adjacent sequences:  A214633 A214634 A214635 * A214637 A214638 A214639

KEYWORD

nonn

AUTHOR

David Applegate, M. F. Hasler and N. J. A. Sloane, Jul 23 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 06:24 EDT 2019. Contains 323599 sequences. (Running on oeis4.)