login
A214632
a(1) = 17, a(n) is smallest prime of the form k*a(n - 1) + 1.
3
17, 103, 619, 2477, 34679, 416149, 7490683, 29962733, 419478263, 5872695683, 82217739563, 986612874757, 27625160493197, 994505777755093, 5967034666530559, 71604415998366709, 6444397439853003811, 180443128315884106709, 9743928929057741762287
OFFSET
1,1
COMMENTS
Sequence does not begin with 2 (17 = 8*2 + 1; all primes are k*2+1) because 3 = 1*2 + 1 or 5 = 2*2 + 1 are smaller; and they would lead to A061092, or A059411. Also: 7 belongs to A061092; 11 to A059411 and 13 is a(1) in A214523.
LINKS
EXAMPLE
a(2) = 103 = 6*17 + 1.
MATHEMATICA
t = {17}; Do[k = 1; While[p = k*t[[-1]] + 1; ! PrimeQ[p], k++]; AppendTo[t, p], {20}]; t (* T. D. Noe, Jul 24 2012 *)
nxt[n_]:=Module[{k=1}, While[!PrimeQ[k*n+1], k++]; k*n+1]; NestList[nxt, 17, 20] (* Harvey P. Dale, Apr 18 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Robin Garcia, Jul 23 2012
STATUS
approved