This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214583 Numbers n such that for all k with gcd(n, k) = 1 and n > k^2, n - k^2 is prime. 5
 3, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38, 42, 48, 54, 60, 62, 68, 72, 80, 84, 90, 98, 108, 110, 132, 138, 140, 150, 180, 182, 198, 252, 318, 360, 398, 468, 570, 572, 930, 1722 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS No further terms < 10^10. This sequence is based on a remark in a paper distributed over the internet (see the Leo Moser link) under the heading "Unsolved Problems and Conjectures" (page 84): "Is 968 the largest number n such that for all k with (n, k) = 1 and n > k^2, n - k^2 is prime? (Erdős)" The statement by Moser contains an error: 968 does NOT have this property (968-25*25 = 343 = 7*7*7), and the largest such number (1722) is larger than 968. A224076(n) <= A064272(a(n)+1). - Reinhard Zumkeller, Mar 31 2013 LINKS Leo Moser, An Introduction to the Theory of Numbers, The Trillia Group 2004, page 84 EXAMPLE For example, the number 20 is part of this sequence because 20-1*1 = 19 (prime), and 20-3*3 = 11 (prime). Not considered are 20-2*2 and 20-4*4, because 2 and 4 are not relative primes to 20. MATHEMATICA Reap[For[p = 2, p < 2000, p = NextPrime[p], n = p+1; q = True; k = 1; While[k*k < n, If[GCD[k, n] == 1, If[! PrimeQ[n - k^2], q = False; Break[]]]; k += 1]; If[q, Sow[n]]]] [[2, 1]] (* Jean-François Alcover, Oct 11 2013, after Joerg Arndt's Pari program *) PROG (PARI) N=10^10; default(primelimit, N); { forprime (p=2, N,     n = p + 1;     q = 1;     k = 1;     while ( k*k < n,         if ( gcd(k, n)==1,             if ( ! isprime(n-k^2),  q=0; break() );         );         k += 1;     );     if ( q, print1(n, ", ") ); ); } /* Joerg Arndt, Jul 21 2012 */ (Haskell) a214583 n = a214583_list !! (n-1) a214583_list = filter (p 3 1) [2..] where    p i k2 x = x <= k2 || (gcd k2 x > 1 || a010051' (x - k2) == 1) &&                          p (i + 2) (k2 + i) x -- Reinhard Zumkeller, Mar 31 2013, Jul 22 2012 CROSSREFS Cf. A065428. Cf. A057828, A000290, A010051. Cf. A224075; subsequence of A008864. Sequence in context: A243653 A203444 A008864 * A232721 A227956 A225531 Adjacent sequences:  A214580 A214581 A214582 * A214584 A214585 A214586 KEYWORD nonn,nice AUTHOR Hans Ruegg, Jul 21 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.