%I #15 Jul 23 2012 15:46:06
%S 864197532,886644219977553312,87765443219997765543222,
%T 888666444221999777555333112,88776654443221999977765554332212
%N Subsequence of fixed points A099009 of the Kaprekar mapping with numbers of the form 8(x1+1)//7(2*x2)//6(x1+1)//5(x2)//4(x1+x2+1)//3(x2)//2(x1+x2)//1//9(x1+2*x2+1)//7(x1+x2+1)//6(x2)//5(x1+x2+1)//4(x2)//3(x1+1)//2(2*x2)//1(x1)//2.
%C The sign // denotes concatenation of digits in the definition, and d(x) denotes x repetitions of d, x>=0.
%H Syed Iddi Hasan, <a href="/A214558/b214558.txt">Table of n, a(n) for n = 0..92</a>
%F If d(x) denotes x repetitions of the digit d, then a(n)=8(x1+1)7(2*x2)6(x1+1)5(x2)4(x1+x2+1)3(x2)2(x1+x2)19(x1+2*x2+1)7(x1+x2+1)6(x2)5(x1+x2+1)4(x2)3(x1+1)2(2*x2)1(x1)2, where x1,x2>=0.
%e 886644219977553312 is a fixed point of the mapping for x1=1, x2=0.
%Y Cf. A214555, A214556, A214557, A214559.
%K nonn,base
%O 0,1
%A _Syed Iddi Hasan_, Jul 20 2012