login
Subsequence of fixed points A099009 of the Kaprekar mapping with numbers of the form 8(x1+1)//6(x1+1)//4(x1+1)//3(x2)//2(x1)//1//9(x1+1)//7(x1+1)//6(x2)//5(x1+1)//3(x1+1)//1(x1)//2.
4

%I #19 Feb 05 2018 22:00:06

%S 864197532,86431976532,8643319766532,864333197666532,

%T 86433331976666532,886644219977553312,8643333319766666532,

%U 88664432199776553312,864333333197666666532,8866443321997766553312,86433333331976666666532,886644333219977666553312

%N Subsequence of fixed points A099009 of the Kaprekar mapping with numbers of the form 8(x1+1)//6(x1+1)//4(x1+1)//3(x2)//2(x1)//1//9(x1+1)//7(x1+1)//6(x2)//5(x1+1)//3(x1+1)//1(x1)//2.

%C The sign // denotes concatenation of digits in the definition, and d(x) denotes x repetitions of d, x>=0.

%H Syed Iddi Hasan, <a href="/A214557/b214557.txt">Table of n, a(n) for n = 0..599</a>

%F If d(x) denotes x repetitions of the digit d, then a(n)=8(x1+1)6(x1+1)4(x1+1)3(x2)2(x1)19(x1+1)7(x1+1)6(x2)5(x1+1)3(x1+1)1(x1)2, where x1,x2>=0.

%e 86431976532 is a fixed point of the mapping for x1=0, x2=1.

%Y Cf. A214555, A214556, A214558, A214559.

%K nonn,base

%O 0,1

%A _Syed Iddi Hasan_, Jul 20 2012

%E Terms a(5) and beyond from b-file by _Andrew Howroyd_, Feb 05 2018