The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214550 Decimal expansion of Sum_{n>=0} 1/(3*n+1)^2. 8
 1, 1, 2, 1, 7, 3, 3, 0, 1, 3, 9, 3, 6, 3, 4, 3, 7, 8, 6, 8, 6, 5, 7, 7, 8, 2, 3, 3, 3, 2, 1, 3, 9, 0, 7, 0, 6, 7, 2, 4, 3, 2, 2, 6, 7, 9, 9, 2, 0, 1, 0, 8, 6, 8, 2, 4, 3, 7, 9, 6, 4, 8, 0, 0, 0, 9, 2, 3, 3, 5, 7, 0, 1, 3, 9, 3, 8, 9, 8, 3, 8, 6, 3, 0, 5, 8, 2, 5, 4, 0, 7, 9, 1, 3, 7, 7, 5, 4, 6, 6, 2, 0, 1, 1, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Sum over the inverse squares of A016777. Dirichlet series Sum_{n>=1} A079978(n-1)/n^s at s=2. This is also (1/9)*Zeta(2, 1/3) = (1/9)*Psi(1, 1/3) with the Hurwitz Zeta Function Zeta(s, a) and the Polygamma function Psi(n, z). See the programs. - Wolfdieter Lang, Nov 12 2017 LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 Eric Weisstein's World of Mathematics, Hurwitz Zeta Function . Eric Weisstein's World of Mathematics, Polygamma Function. FORMULA Equals (A086724 + A214549)/2 because the sequence represented by A079978 (with offset 1) is the average of A011655 and A102283. From Amiram Eldar, Oct 02 2020: (Start) Equals Integral_{0..1} log(x)/(x^3-1) dx = Integral_{1..oo} x*log(x)/(x^3-1) dx. Equals 4*Pi^2/27 - A294967. (End) EXAMPLE 1.1217330139363437868657... = 1/1^2 + 1/4^2 + 1/7^2 + 1/10^2 + 1/13^2 + ... MAPLE evalf(Psi(1, 1/3)/9); MATHEMATICA RealDigits[ PolyGamma[1, 1/3]/9, 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *) PROG (PARI) zetahurwitz(2, 1/3)/9 \\ Charles R Greathouse IV, Jan 30 2018 (PARI) sumpos(n=0, 1/(3*n+1)^2) \\ Charles R Greathouse IV, Jan 30 2018 CROSSREFS Cf. A016777, A086724, A214549, A294967. Sequence in context: A091370 A125697 A090699 * A120903 A180335 A257699 Adjacent sequences:  A214547 A214548 A214549 * A214551 A214552 A214553 KEYWORD cons,nonn AUTHOR R. J. Mathar, Jul 20 2012 EXTENSIONS More terms from Jean-François Alcover, Feb 11 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 00:46 EST 2022. Contains 350473 sequences. (Running on oeis4.)