login
Least m>0 such that m^4 >= n!.
2

%I #7 Jul 24 2012 09:37:29

%S 1,2,2,3,4,6,9,15,25,44,80,148,281,544,1070,2139,4343,8946,18676,

%T 39495,84545,183102,400981,887517,1984548,4481308,10215173,23498233,

%U 54529901,127618907,301130984,716214216

%N Least m>0 such that m^4 >= n!.

%H Clark Kimberling, <a href="/A214448/b214448.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = ceiling(n!^(1/4)).

%e a(4)=3 because 3^2 < 4! <= 3^3.

%p A214448 := proc(n)

%p ceil(root[4](n!)) ;

%p end proc: # _R. J. Mathar_, Jul 24 2012

%t Table[Ceiling[n!^(1/4)], {n, 1, 40}]

%Y Cf. A214049.

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, Jul 18 2012