login
A214447
(-2)^n * Euler_polynomial(n,1) * binomial(2*n,n).
3
1, -2, 0, 40, 0, -4032, 0, 933504, 0, -385848320, 0, 249576198144, 0, -232643283353600, 0, 295306112919306240, 0, -489743069731226910720, 0, 1028154317960939805081600, 0, -2665182817368374114506506240, 0, 8360422228704533182913131315200
OFFSET
0,2
COMMENTS
Central column of the Euler tangent triangle, a(n) = A081733(2*n,n).
Also a(n) = -A162660(2*n,n) for n > 0. - Peter Luschny, Jul 23 2012
FORMULA
a(n) = [x^n](skp(2*n,x+1)-skp(2*n,x-1))/2) where skp(n,x) are the Swiss-Knife polynomials A153641.
a(n) = (n+1)*2^n*(2*n-1)!!*sum_{k=1..n}sum_{j=0..k}(-1)^(k-j)*(k-j)^n/(j!*(n-j+1)!) for n > 0. - Peter Luschny, Jul 23 2012
MAPLE
A214447 := n -> binomial(2*n, n)*(-2)^n*euler(n, 1):
seq(A214447(n), n=0..23);
PROG
(Sage)
from mpmath import mp, fac2
mp.dps = 32
def A214447(n) : return (n+1)*2^n*fac2(2*n-1)*add(add((-1)^(k-j)*(k-j)^n / (factorial(j)*factorial(n-j+1)) for j in (0..k)) for k in (1..n))
print([int(A214447(n)) for n in (0..19)]) # Peter Luschny, Jul 23 2012
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, Jul 18 2012
STATUS
approved