login
A214405
Numbers of the form (4k+3)^2-8 or (4k+5)^2+4.
9
1, 29, 41, 85, 113, 173, 217, 293, 353, 445, 521, 629, 721, 845, 953, 1093, 1217, 1373, 1513, 1685, 1841, 2029, 2201, 2405, 2593, 2813, 3017, 3253, 3473, 3725, 3961, 4229, 4481, 4765, 5033, 5333, 5617, 5933, 6233, 6565, 6881, 7229, 7561, 7925, 8273, 8653
OFFSET
1,2
COMMENTS
For every odd n the triple (a(n-1)^2, a(n)^2 , a(n+1)^2) is an arithmetic progression, i.e., 2*a(n)^2 = a(n-1)^2 + a(n+1)^2.
In general a triple((x-y)^2,z^2,(x+y)^2) is an arithmetic progression if and only if x^2+y^2=z^2.
The first differences of this sequence is the interleaved sequence 28,12,44,28,60,44....
FORMULA
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4).
O.G.f.: (1+27*x-17*x^2+5*x^3)/((1+x)*(1-x)^3).
a(n) = 4*n*(n+3)-6*(-1)^n+7.
2*a(2n+1)^2 = a(2n)^2 + a(2n+2)^2.
EXAMPLE
a(4) = 2*a(3) - 2*a(1) + a(0) = 2*85 - 2*29 + 1 = 113.
PROG
(Magma) I:=[1, 29, 41, 85]; [n le 4 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..75]];
(Maxima) A214405(n):=4*n*(n+3)-6*(-1)^n+7$
makelist(A214405(n), n, 0, 30); /* Martin Ettl, Nov 01 2012 */
CROSSREFS
Sequence in context: A137226 A057539 A157257 * A104072 A357175 A070268
KEYWORD
nonn,easy
AUTHOR
STATUS
approved