This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214392 If n mod 4 = 0 then a(n) = n/4, otherwise a(n) = n. 4
 0, 1, 2, 3, 1, 5, 6, 7, 2, 9, 10, 11, 3, 13, 14, 15, 4, 17, 18, 19, 5, 21, 22, 23, 6, 25, 26, 27, 7, 29, 30, 31, 8, 33, 34, 35, 9, 37, 38, 39, 10, 41, 42, 43, 11, 45, 46, 47, 12, 49, 50, 51, 13, 53, 54, 55, 14, 57, 58 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Equivalent to A065883 for n mod 16 != 0. - Peter Kagey, Sep 02 2015 LINKS Jeremy Gardiner, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,0,2,0,0,0,-1). FORMULA From Bruno Berselli, Oct 16 2012: (Start) G.f.: x*(1+2*x+3*x^2+x^3+3*x^4+2*x^5+x^6)/(1-x^4)^2. a(n) = ( 1 - (3/16)*(1+(-1)^n)*(1+i^(n(n+1))) )*n, where i=sqrt(-1). a(n) = a(-n) = 2*a(n-4) - a(n-8). (End) From Werner Schulte, Jul 08 2018: (Start) a(n) for n > 0 is multiplicative with a(2^e) = 2^e if e < 2 and a(2^e) = 2^(e-2) if e > 1 otherwise a(p^e) = p^e for prime p > 2 and e >= 0. Dirichlet g.f.: Sum_{n>0} a(n)/n^s = (1-3/4^s)*zeta(s-1). Dirichlet inverse b(n) is multiplicative with b(2^e) = (-1)^e * A038754(e), e >= 0, and for prime p > 2: b(p) = -p and b(p^e) = 0 if e > 1. (End) EXAMPLE a(16) = 16/4 = 4; a(17) = 17. MATHEMATICA Table[If[Mod[n, 4] == 0, n/4, n], {n, 0, 50}] (* G. C. Greubel, Oct 26 2017 *) LinearRecurrence[{0, 0, 0, 2, 0, 0, 0, -1}, {0, 1, 2, 3, 1, 5, 6, 7}, 60] (* Harvey P. Dale, Mar 30 2018 *) PROG (PARI) a(n)=if(n%4, n, n/4) \\ Charles R Greathouse IV, Oct 16 2015 CROSSREFS Cf. A026741, A051176, A186646, A065883, A038754. Sequence in context: A319652 A327938 A065883 * A071975 A182659 A197701 Adjacent sequences:  A214389 A214390 A214391 * A214393 A214394 A214395 KEYWORD nonn,easy,mult AUTHOR Jeremy Gardiner, Jul 15 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 17:55 EDT 2019. Contains 328319 sequences. (Running on oeis4.)