login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214341 Expansion of 1 / k(q) = 1 / (r(q) * r(q^2)^2) in powers of q where r() is the Rogers-Ramanujan continued fraction. 2
1, 1, 2, 1, 1, 0, -1, -2, -2, -1, 1, 3, 4, 4, 1, -2, -6, -8, -7, -3, 4, 10, 14, 12, 6, -6, -16, -22, -20, -8, 8, 26, 34, 31, 12, -14, -41, -54, -47, -20, 23, 61, 84, 72, 31, -32, -90, -122, -107, -44, 45, 133, 174, 154, 61, -68, -192, -254, -220, -90, 100 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,3

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Number 12 of the 15 generalized eta-quotients listed in Table I of Yang 2004. - Michael Somos, Aug 07 2014

A generator (Hauptmodul) of the function field associated with congruence subgroup Gamma_1(10). [Yang 2004] - Michael Somos, Aug 07 2014

LINKS

Seiichi Manyama, Table of n, a(n) for n = -1..10000

S. Cooper, On Ramanujan's function k(q)=r(q)r^2(q^2), Ramanujan J., 20 (2009), 311-328.

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

Y. Yang, Transformation formulas for generalized Dedekind eta functions, Bull. London Math. Soc. 36 (2004), no. 5, 671-682. See p. 679, Table 1.

FORMULA

Expansion of (1/x) * (f(-x^4, -x^6) * f(-x^3, -x^7)) / (f(-x^2, -x^8) * f(-x, -x^9)) in powers of x where f(,) is Ramanujan's two-variable theta function.

Euler transform of period 10 sequence [ 1, 1, -1, -1, 0, -1, -1, 1, 1, 0, ...].

G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u + v)^2 - v * (u^2 - 1).

G.f.: (1/x) * Product_{k>0} (1 - x^(10*k - 3)) * (1 - x^(10*k - 4)) * (1 - x^(10*k - 6)) * (1 - x^(10*k - 7)) /((1 - x^(10*k - 1)) * (1 - x^(10*k - 2)) * (1 - x^(10*k - 8)) * (1 - x^(10*k - 9))).

Convolution inverse of A112274. a(n) = A112274(n) + A132980(n).

EXAMPLE

G.f. = 1/q + 1 + 2*q + q^2 + q^3 - q^5 - 2*q^6 - 2*q^7 - q^8 + q^9 + 3*q^10 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ 1/q Product[(1 - q^k)^{-1, -1, 1, 1, 0, 1, 1, -1, -1, 0}[[Mod[k, 10, 1]]], {k, n + 1}], {q, 0, n}]; (* Michael Somos, Aug 07 2014 *)

PROG

(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( prod( k=1, n, (1 - x^k + A)^[0, -1, -1, 1, 1, 0, 1, 1, -1, -1][k%10 + 1]), n))};

CROSSREFS

Cf. A112274, A132980.

Sequence in context: A277264 A259538 A099314 * A281871 A131334 A004602

Adjacent sequences:  A214338 A214339 A214340 * A214342 A214343 A214344

KEYWORD

sign

AUTHOR

Michael Somos, Jul 12 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 14:52 EDT 2019. Contains 328161 sequences. (Running on oeis4.)