login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Triangle read by rows: T(n,k) = number of rooted maps with n vertices and k faces on a non-orientable surface of type 3/2 (0 <= k <= n).
5

%I #14 Jan 08 2024 09:38:59

%S 0,0,41,0,690,16925,0,7150,237652,4306778,0,58760,2518957,56864524,

%T 910734615,0,420182,22417804,613687758,11675167470,174833737848

%N Triangle read by rows: T(n,k) = number of rooted maps with n vertices and k faces on a non-orientable surface of type 3/2 (0 <= k <= n).

%H Didier Arquès and Alain Giorgetti, <a href="https://doi.org/10.1016/S0304-3975(98)00230-8">Counting rooted maps on a surface</a>, Theoret. Comput. Sci. 234 (2000), no. 1-2, 255--272. MR1745078 (2001f:05078).

%e Triangle begins:

%e 0;

%e 0, 41;

%e 0, 690, 16925;

%e 0, 7150, 237652, 4306778;

%e 0, 58760, 2518957, 56864524, 910734615;

%e 0, 420182, 22417804, 613687758, 11675167470, 174833737848;

%e ...

%Y Diagonals give A118448, A214335, A213336, A213338.

%Y Cf. A214806.

%K nonn,tabl

%O 0,3

%A _N. J. A. Sloane_, Jul 27 2012